Balintoni, I., Puşte, A., Balica, C. and Stan, R. (2002): Somes Unit - version 1. In: Dunkl, I., Balintoni, I., Frisch, W., Hoxha, L., Janák, M., Koroknai, B., Milovanovic, D., Pamić, J., Székely, B. and Vrabec, M. (Eds.): Metamorphic Map and Database of Carpatho-Balkan-Dinaride Area. http://www.met-map.uni-goettingen.de
Somes Unit (SOA)
compiled: I. Balintoni, A. Puşte, C. Balica and R. Stan (2002)
Age of Protolith, Geochemistry
Lithology, Mineralogy, Metamorphic Grade
Thermobarometry
Geochronology
Structural Evolution
Summary
Bibliography
Links
Definition
The Somes Unit comprises an accretion wedge-like metamorphosed lithology of unknown protolith age intruded by Devonian and Late Carboniferous granitoids and by Late Cretaceous calc-alkaline banatites and Tertiary calc-alkaline magmas. Metamorphism in the almandine amphibolite facies during a pre-Variscan event was followed by a high temperature event during the Devonian time and Carboniferous exhumation.
Geographic Position
The Somes Unit makes up the central and northern part – the Bihor autochthonous – of the Apuseni Mountains and also constitutes the basement for the Garda Nappe from the Biharia Nappe System, and Finis Nappe from the Codru Nappe System (Balintoni, 1997).
Maps
Geological Map of Romania 1:1.000.000 (Sandulescu et al., 1978)
Geological Map of Romania 1:200.000, Turda sheet (Lupu et al., 1967), Brad sheet (Bleahu et al., 1967), Cluj sheet (Saulea et al., 1967), Simleul Silvaniei sheet (Lupu et al., 1967)
Geological Map of Romania 1:100.000, Arieseni sheet (Bleahu and Dimitrescu, 1963), Moneasa sheet (Bleahu, 1963)
Geological Map of Romania 1:50.000, sheets: Avram Iancu (Dimitrescu et al., 1977), Valea Ierii (Hartopanu et al., 1982), Poiana Horea (Bleahu et al, 1980), Campeni (Dimitrescu et al., 1974), Ciucea (Stefan et al., 1974), Mezes (Rusu et al., 1977), Muntele Mare (Hartopanu et al., 1982), Plopis (Papaianopol et al., 1977), Rachitele (Mantea et al., 1987), Remeti (Patrulius et al., 1973), Tusa (Marinescu et al., 1982), Zalau (Rusu et al., 1994), Dumbravita (Bleahu et al., 1984).
Boreholes
According to Visarion and Sandulescu (1970), the Somes and Finis type crystalline (Somes Unit), extends towards south of Oradea till the Crisu Negru River. We assume that the granites intercepted in boreholes between Zerind and Curtici belong to Finis Nappe basement too.
Boundaries
To the north, the Somes Unit is covered by the Upper Cretaceous-Tertiary post-tectogenetic sequences of the Transylvanian Depression and of the eastern prolongations of the Pannonian Basin. To the south, its boundaries are represented by the margins of the Biharia and Codru nappe Systems. The Garda and Finis Nappes basements crop out under the bottom of the Biharia Nappe and Dieva Nappe respectively, in half windows. We appreciate that toward north and north-west, boundaries of the Somes Unit are coincident with margins of Tisia block.
Structural Position
The Somes Unit makes the basement of the autochtonous Bihor Unit and of the Garda and Finis Nappes. The Garda Nappe is the lowermost unit of the Biharia Nappe System, and the Finis Nappe is the second one of the Codru Nappe System and the single one comprising metamorphics in its constitution. In a retro-tectonic restoration, the crystalline of the Garda and Finis nappes is placed at the southern margin of the Somes Unit, coming up in contact with the northern margin of the Biharia Unit. In a general sense, the Somes Units forms the main part of the Tisia block crystalline, outward the front of the Biharia and Codru Nappe Systems.
Fig. 1 Structural map of Apuseni Mountains (from Balintoni, ____)
Subunits
We distinguish three subunits within the Somes Unit: the metamorphic sequences of the Bihor autochthonous and of the Garda and Finis Nappes respectively. A characteristic of the Garda Nappe basement is the presence of migmatized amphibolites. In the basement of the Finis Nappe, there are several granite bodies, probably of different ages.
Correlation
Kräutner (1988) tried a lithostratigraphic correlations of the Somes Unit with the Sebes-Lotru and Dragsan Units from South Carpathians, with the Bretila Unit from East Carpathians, with Jaraba Group from Western Carpathians, with the Muride Crystalline from Austro-Alpine and with the Rhodopian Super-group (its lower part) from Rhodopes. Such correlations can not be accepted as relevant because of great distances and because of the absence of protolith’s isotopic ages. Another reason is the paucity of data in order to support reliable ages for metamorphic events. Also, the geochemical data necessary for tectonic setting models are scarce.
Age of Protolith, Geochemistry
The protolith ages of the Somes Unit are unknown. Several logic reasonings, valuable till acquisition of some new isotopic ages, afford us to suppose a Precambrian age for its protoliths. Thus we mention: first, the island arc Biharia Unit which separates the Somes and Baia de Aries continental crust fragments, yelded 502 Ma and 489 Ma protolith ages (Pana, 1998; Pana and Balintoni, 2000). Second, the subduction of the Biharia island arc suite beneath the Garda amphibolites, generated the 400 Ma Codru migmatites (Dallmeyer et al., 1999), named by Balintoni (1997), Aries granitoids. Because the Garda amphibolites were already metamorphosed during the Aries granitoids formation, the initial metamorphism of the Somes Unit has probably been pre-Devonian.
Balintoni (1985, 1997), included in the Somes Unit, the Arada Formation and the Codru Complex (Dimitrescu, 1988) the last one constituting the basement of Finis Nappe. This is important for understanding the Somes Unit tectonic setting, because the Arada and Codru sequences comprises significant metabasite bodies. A systematic geochemistry did not conduct for the Somes Unit rocks, but Dimitrescu (1988) notes "Leptyno-Amphibolite" associations in the Bihor "Group", and Arada "Formation" and orthoamphibolites (meta-gabbros and meta-hornblendites) in the Codru "Complex". The association of metabasites with acid metavolcanics paragneisses and micaschists, and the scarce appearance of carbonate and graphitic rocks suggested to Balintoni (1997) to propose an accretion wedge-like tectonic setting for the Somes Unit. It can also be supposed an island arc meta-suite or both, remnants from an accretion wedge complex and from an island arc conjoint suite.
Lithology, Mineralogy, Metamorphic Grade
The lithology of Somes Unit has been synthesized by Balintoni (1997) according to Dimitrescu (1988), and the sheets of Geological Map of Romania, 1:50.000. The lower part (Valea Cosuri Micaschist Formation, Dimitrescu, 1988), consists of micaschists and paragneisses, and a few amphibolites, mica-quartzite and K-feldspar gneiss intercalations. Over these follows the "Giurcuta Leptyno-Amphibolite Formation" (Dimitrescu, 1988), formed from micaschists, K-feldspar gneisses (leptynites), feldspar-quartzites and amphibolites. The third term is constitutes by the "Upper Micaschist Formation" (Dimitrescu, 1988), exhibiting a micaschist suite with some leptynite, white or graphite quartzitic intercalations.
The fourth term, the "Arada formation" (Dimitrescu, 1988), consists from retrogressive micaschists (Balintoni, 1985), amphibolites, wite gneisses, metaporphiroids and a few graphite quartzites. It is also known a carbonate lens.
The position of the fifth term "Codru Complex" (Dimitrescu, 1988), is not clear because it makes up the Garda Nappe basement. It is formed from migmatized amphibolites.
In the Bihor Unit are known pegmatitic mobilisates and it is also pierced by granitoids. The Muntele Mare granite is an intrusive body with a hornfels aureole containing recristallized biotite and muscovite along with sillimanite, cordierite, or andalusite (Dimitrescu, 1988). The thermal contact zone is about 1km large. The Muntele Mare granite intruded the Bihor autochthonous unit, and Pana (1998), obtained an isotopic age on zircon of 295 Ma (Late Carboniferous).
The Aries intrusions affected the Garda nappe basement. For the Madrigesti granite (Finis Nappe basement), Pana (1998), recorded a U/Pb isotopic age on zircon of 392 Ma, and for the Aries (Codru) granodiorite of 372 Ma (Middle and Late Devonian). From the basement of Finis Nappe are also known the Siria and the Codru granites, wich according to Stan (1989), have a Permian age (Permian rock xenolith engulfed).
The mineral association of the Somes Unit rocks includes several successive metamorphic parageneses. According to Hartopanu (in Hartopanu et al., 1982) for the first paragenesis, the cyanite-staurolite are the characteristic mineral, for the second one the sillimanite, and the third one has a retrogressive character, containing biotite and chlorite. Balintoni, (1985), advocated the retrogressive evolution of the "Arada Formation", as sustained by Giusca et al. (1967).
Based on successive parageneses we can imagine the following evolution: regional metamorphism of an accretion wedge in a contractional tectonic setting, until the staurolite-kyanite zone of the amphibolite facies; the age of this event is unknown. A supplementary heating during the Aries type Upper Devonian migmatization, when collided the Biharia Island Arc and the Bihor Unit continental fragment. Then it was generated the sillimanite. Regional extension and exhumation to the end of Variscan Orogeny, accompanied by a generalized retrogression and intrusive granite emplacement. This event has been followed by the Permian volcanism and continental sedimentation. During the Mesozoic, great sedimentary suites accumulated and during the Early Cretaceous the marginal part of the Somes Unit has been sheared and participated to the formation of the Codru and Biharia Nappe Systems. A very strong and widespread Later Cretaceous calc-alkaline "Banatitic" suite invaded the Bihor crystalline.
Table 1. Thermometric data measured on the formations of Somes Unit
Thermometer |
Lithology |
Mineral |
Range 0C |
Method authors |
Source |
||
Min |
Av. |
Max |
|||||
Bifeldspars |
Pegmatite |
K-feldspar |
260 – 571 |
Barth, 1962 |
Stumbea, 2001 |
||
Pegmatite |
Albite |
385 |
Barth, 1962 |
Stumbea, 2001 |
|||
Pegmatite |
K-feldspar |
250 |
466 |
600 |
Barth, 1962 |
Stumbea, 2001 |
|
Pegmatite |
Plagioclase |
320 |
363 |
440 |
Barth, 1962 |
Stumbea, 2001 |
|
Pegmatite |
Microcline |
475 - 540 |
Barth, 1962 |
Murariu, 2001 |
|||
Pegmatite |
Microcline |
400 – 475 |
Seck, 1971 |
Murariu, 2001 |
|||
Pegmatite |
Plagioclase |
405 – 652 |
Barth and Orville |
Murariu, 2001 |
|||
Muscovite - Paragonite |
Pegmatite |
Muscovite |
250 |
353 |
460 |
Eugster and Yoder, 1955 |
Stumbea, 2001 |
Pegmatite |
Muscovite |
250 – 485 |
Eugster and Yoder, 1955 |
Murariu, 2001 |
|||
Pegmatite |
Muscovite |
250 – 520 |
Guidotti et al., 1994 |
Murariu, 2001 |
|||
Scandium biotite content |
Pegmatite |
Biotite |
510 – 640 |
Oftedahl, 1943 |
Murariu, 2001 |
||
Pegmatite |
Biotite |
600 – 650 |
Dagelaisky and Krilova,1973 |
Murariu, 2001 |
|||
Micaschist |
Biotite |
595 |
Oftedahl, 1943 |
Murariu, 2001 |
|||
Micaschist |
Biotite |
600 |
Dagelaisky and Krilova,1973 |
Murariu, 2001 |
|||
Pegmatite |
Biotite |
630 – 740 |
Oftedahl, 1943 |
Stumbea, 2001 |
|||
Micaschist |
Biotite |
590 |
Oftedahl, 1943 |
Stumbea, 2001 |
|||
Pegmatite |
Biotite |
645 – 760 |
Dagelaisky, Krilova,1973 |
Stumbea, 2001 |
|||
Micaschist |
Biotite |
610 |
Dagelaisky, Krilova,1973 |
Stumbea, 2001 |
|||
Mg/(Mg+Fe+Mn) in the garnet-biotite system |
Micaschist |
Garnet+ Biotite |
542 - 579 |
Kalmar, 1994 |
|||
Fe/(Fe+Mg) in biotite δO2: T0C |
Pegmatite |
Biotite |
555 – 595 |
Wones, Eugster, 1965 |
Murariu, 2001 |
||
Litium Biotite content |
Pegmatite |
Biotite |
540 – 610 |
Pomarleanu and Movileanu,1977 |
Murariu, 2001 |
||
Micaschist |
Biotite |
650 |
Pomarleanu and Movileanu,1977 |
Murariu, 2001 |
|||
Mackenzie diagram |
Pegmatite |
Plagioclase |
490 – 600 |
Mackenzie, 1957 |
Stumbea, 2001 |
||
Muscovite polytypes |
Pegmatite |
Muscovite |
>400 |
Stumbea, 2001 |
|||
Q-Ab-Or system |
Pegmatite |
Quartz+Albite +Orthoclase |
700 - 800 |
Luth and Tuttle, 1969 |
Stumbea, 2001 |
Regarding these data there are some observation that can be made.
1) The least temperatures were recorded by muscovite. It probably closed during the Variscan thermo-tectonic event.
2) The highest temperatures have been registered by the Q-Ab-Or system and scandium content in biotite.
3) Some biotite and biotite-garnet systems probably conserved mixed temperatures including ones of the first thermo-tectonic event.
There are some important radiometric ages, performed especially on granitoids. They constrain a few metamorphic and magmatic events but the protolith ages are missing.
Table 2. Geochronological data obtained on Somes Unit
Method |
Lithology |
Age (Ma) |
Source |
Locality |
||
K/Ar WR |
Micaschist |
227±8 |
Pavelescu et al., 1975 |
Cosului Valley |
||
K/Ar Hbl |
Amphibolite |
209±6 |
Pavelescu et al., 1975 |
Iara Valley |
||
K/Ar Bt |
Quartz-Feldspar schists |
79±5 |
Pavelescu et al., 1975 |
Iara Valley |
||
K/Ar WR |
Garnet micaschist |
268 |
Soroiu et al., 1969 |
Cosului Valley |
||
K/Ar WR |
Garnet micaschist |
381 |
Soroiu et al., 1969 |
Bulzului Valley |
||
K/Ar Ms |
Muntele Mare pegmatite |
237±6 |
Pavelescu et al., 1975 |
Valea Mare, Bistra |
||
K/Ar Ms |
Muntele Mare pegmatite |
199±6 |
Pavelescu et al., 1975 |
Valea Mare, Bistra |
||
K/Ar Bt |
Muntele Mare pegmatite |
119±3 |
Pavelescu et al., 1975 |
Valea Mare, Bistra |
||
K/Ar Bt |
Muntele Mare pegmatite |
85±3 |
Pavelescu et al., 1975 |
Calatele |
||
K/Ar Bt |
Muntele Mare pegmatite |
90 |
Soroiu et al., 1969 |
Somesul Rece Valley |
||
K/Ar KF |
Muntele Mare pegmatite |
89 |
Soroiu et al., 1969 |
Somesul Rece Valley |
||
K/Ar Bt |
Muntele Mare pegmatite |
115 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
K/Ar Bt |
|
160 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
K/Ar Ms |
Muntele Mare pegmatite |
156 |
Soroiu et al., 1969 |
Somesul Rece Valley |
||
K/Ar Ms |
Muntele Mare pegmatite |
194 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
K/Ar Ms |
Muntele Mare pegmatite |
232 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
|
|
Plateau Age |
ICA |
Total Gas Age |
|
|
40Ar/39Ar Ms |
Muntele Mare granite |
191.3 |
|
189.8 |
Dallmeyer et al., 1999 |
Marisele Village |
40Ar/39Ar Ms |
Arada retrogr. plagiogneiss |
|
|
253.0 |
Dallmeyer et al., 1999 |
Bistra Valley |
40Ar/39Ar Ms |
Sericite quartzite |
302.5 |
|
295.1 |
Dallmeyer et al., 1999 |
Rusesti Village |
40Ar/39Ar Hbl |
Amphibolite |
306.1 |
300 |
266.8 |
Dallmeyer et al., 1999 |
Ciurturi Village |
40Ar/39Ar Ms |
Retrogressed plagiogneiss |
313.8 |
|
311.4 |
Dallmeyer et al., 1999 |
Ciurturi Village |
40Ar/39Ar Hbl |
Amphibolite |
316.7 |
313.0 |
319.6 |
Dallmeyer et al., 1999 |
Belis Village |
40Ar/39Ar Ms |
Plagiogneiss |
122.9 |
|
116.0 |
Dallmeyer et al., 1999 |
Iara Valley |
40Ar/39Ar Ms |
Mylonitic orthogneiss |
100.6 |
|
99.6 |
Dallmeyer et al., 1999 |
Tarnita Lake |
40Ar/39Ar Ms |
Chl-Ms schist, Garda |
339.9 |
|
336.3 |
Dallmeyer et al., 1999 |
Huzii Valley |
40Ar/39Ar Hbl |
Chl-Ms schist, Garda |
334.6 |
|
326.4 |
Dallmeyer et al., 1999 |
Huzii Valley |
40Ar/39Ar Hbl |
Amphibolite, Garda |
|
|
371.1 |
Dallmeyer et al., 1999 |
Salasele Valley |
40Ar/39Ar Hbl |
Amphibolite, Garda |
336.4 |
364.0 |
367.1 |
Dallmeyer et al., 1999 |
Iara Valley |
40Ar/39Ar Hbl |
Amphibolite, Garda |
337.7 |
|
386.8 |
Dallmeyer et al., 1999 |
Iara Valley |
40Ar/39Ar Hbl |
Amphibolite, Garda |
404.9 |
400.8 |
405.0 |
Dallmeyer et al., 1999 |
Iara Valley |
K/Ar Ms |
Pegmatoid granite,Garda |
296 |
Soroiu et al., 1969 |
Dosul Neagului |
||
K/Ar Ms |
Pegmatoid granite,Garda |
305 |
Soroiu et al., 1969 |
Dosul Neagului |
||
K/Ar Ms |
Pegmatoid granite,Garda |
326 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
K/Ar Ms |
Pegmatoid granite,Garda |
343 |
Soroiu et al., 1969 |
Bistra Valley |
||
K/Ar Bt |
Trondhjemite, Garda |
303 |
Soroiu et al., 1969 |
Ariesul Mare, Pojorata |
||
K/Ar Hbl |
Pegmatoid granite,Garda |
288 |
Soroiu et al., 1969 |
Bistra Valley |
||
K/Ar Hbl |
Pegmatoid granite,Garda |
300 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
K/Ar Hbl |
Hornblendite, Garda |
357±10 |
Pavelescu et al., 1975 |
Valea Mare, Bistra |
||
K/Ar Ms |
Pegmatite, Garda |
356±9 |
Pavelescu et al., 1975 |
Valea Mare, Bistra |
||
K/Ar Bt |
Biotitite, Garda |
340±9 |
Pavelescu et al., 1975 |
Ariesul Mare, Pojorata |
||
K/Ar Bt |
Pegmatoid granite,Garda |
281±10 |
Pavelescu et al., 1975 |
Ariesul Mare, Pojorata |
||
K/Ar Bt |
Trondhjemite, Garda |
230±9 |
Pavelescu et al., 1975 |
Ariesul Mare, Pojorata |
||
K/Ar WR |
Arada Sericite feld schist |
49 |
Soroiu et al., 1969 |
Valea Mare, Bistra |
||
K/Ar WR |
Arada Sericite schist |
111 |
Soroiu et al., 1969 |
Albacului Valley |
||
K/Ar WR |
Arada Sericite feld schist |
164 |
Soroiu et al., 1969 |
Bistra Valley |
||
K/Ar WR |
Arada sheared hornfels |
204 |
Soroiu et al., 1969 |
Bistra Valley |
||
U/Pb zircon |
Madrigesti granite |
392 |
Pana, 1998 |
Drocea Massif |
||
U/Pb zircon |
Codru granodiorite |
372.2±1.0 |
Pana, 1998 |
Neagu Valley |
||
U/Pb zircon |
Muntele Mare Granite |
295±1 |
Pana, 1998 |
Somesul Rece Valley |
||
Sm/Nd WR |
Muntele Mare Granite |
t=295 1.62 Ga (TDM) |
Pana, 1998 |
Somesul Rece Valley |
||
Sm/Nd WR |
Gneiss Q-Fp |
1.90 Ga (TDM) |
Pana, 1998 |
Giurcuta |
||
Sm/Nd WR |
Gneiss Grt |
1.87 Ga (TDM) |
Pana, 1998 |
Baisoara |
||
Sm/Nd WR |
Micaschist-Ky |
1.76 Ga (TDM) |
Pana, 1998 |
Iara |
||
Sm/Nd WR |
Gneiss |
1.73 Ga (TDM) |
Pana, 1998 |
Madrigesti |
||
Sm/Nd WR |
Granite |
t=392 1.75 Ga (TDM) |
Pana, 1998 |
Madrigesti |
||
Sm/Nd WR |
Gneiss Grt-And |
1.61 Ga (TDM) |
Pana, 1998 |
Codru Moma |
||
Sm/Nd WR |
Granite |
1.24 Ga (TDM) |
Pana, 1998 |
Codru Moma |
||
Sm/Nd WR |
Fibrolite schist |
1.63 Ga (TDM) |
Pana, 1998 |
Huzii Valley |
||
Sm/Nd WR |
Granite |
1.38 Ga (TDM) |
Pana, 1998 |
Iara Valley |
||
Sm/Nd WR |
Granodiorite (372 Ma) |
t=372 0.96 Ga (TDM) |
Pana, 1998 |
Neagu Valley |
WR: whole rock, Hbl: hornblende, Ms: muscovite, Bt: biotite, K-Fp: K-Feldspar
The Cretaceous ages can be connected with the "Banatite" intrusions and with the Cretaceous thrusting. They do not represent a regional metamorphic event.
1. Protolith tectonic setting. The Somes Unit has been individualized as an accretion wedge-island arc suite. Its initial metamorphism realized in an unknown context and the protolith ages are missing.
2. Plate tectonics and metamorphism. The metamorphic grade of the first event is suggested by the staurolite-kyanite bearing paragenesis. During this event, the Somes Unit became a continental crust fragment. Later, during Devonian time, the Somes Unit arrived in a collisional relationship with the Biharia Island Arc suite. In this event, the Somes Unit was probably in an upper plate position. It has been supplementary heated until the sillimanite crystallization. In this time, an inceptive anatexis occurred, facilitating the migmatite and pegmatite formation. The Aries intrusions affected the margin of the Somes Unit ("Codru Complex" according to Dimitrescu, 1988), and probably the collision created the thrust structures and favored an Late Devonian partial exhumation of this margin.
At the end of Variscan Orogeny, a generalized extention has been accompanied by intrusive granite emplacement (Muntele Mare, Siria and Codru Moma intrusions), and retrogressive metamorphism toward the chlorite zone of the greenschists facies and Permian deposits have been accommodated. The Permian deposits have been succeeded by Triassic continental platform sediments. The Mesozoic rifting created the Meliata and South Penninic oceanic environments around the Preapulian craton. During the Early Cretaceous convergence, the shearing of its Meliatic and Penninic margins generated the Codru and Biharia nappe systems, respectively. After the nappe emplacement, the calc-alkaline "Banatites" invaded the Muntii Apuseni Structures. This intrusive and extrusive magmatism indicates an Late Cretaceous relaxation tectonics.
In the northern part of Somes Unit, some very large Alpine folds can be mentioned. The hinges of these folds are parallel with the Plopis Summit in the NW area, and with the Meses Summit in the NE area. They can be correlated with the directions of tectonic transport of Codru and Biharia Nappe Systems, being perpendicular to these transport directions.
The Somes Unit of accretion wedge-island arc affinity, became a continental crust fragment probably before 500 Ma. Around 400 Ma it has been involved in a collisional relationship with the Biharia Island Arc suite. This event generated the Aries migmatites and induced a supplementary heating of the metamorphic sequence from the staurolite-kyanite zone to the sillimanite zone. Before the beginning of Permian period, a widespread extension and exhumation took place, accompanied by granite intrusion and metamorphic retrogression. This event could be conceived as associated with the late Variscan Orogeny instability. The extensional tectonics continued during the Permian and Early Mesozoic as the process of Tethys opening. As a part of Preapulian craton, the Somes Unit was included in the Early Cretaceous convergence. The Codru and Biharia Nappe Systems resulted in this time. The Late Cretaceous relaxation promoted the widespread calc-alkaline "Banatitic" magmatism.
Balintoni, I. (1985): Corélation des unites lithostratigraphiques et tectoniques longeant le ruisseau d’Aries entre la valée de Iara et le Mont Gaina (Monts Apuseni). D. S. Inst. Geol. Geophis., LXIX/5 (1982), 5-15, Bucuresti.
Bleahu, M. (1963): ): Geological Map of Romania sc. 1:100.000, Moneasa sheet, Inst. Geol. Bucuresti.
Bleahu, M. and Dimitrescu, R. (1963): ): Geological Map of Romania sc. 1:100.000, Arieseni sheet, Inst. Geol. Bucuresti.
Bleahu, M., Dimitrescu, R., Bordea, S., Borea, J. And Mantea, G. (1980): Geological Map of Romania sc. 1:50.000, Poiana Horea sheet, Inst. Geol. Geofiz. Bucuresti.
Bleahu, M., Panin, St., Stefanescu, M., Stan, N., Popescu, A., Tomescu, C. and Stefan, A. (1984): Geological Map of Romania sc. 1:50.000, Dumbravita sheet, Inst. Geol. Geofiz. Bucuresti.
Bleahu, M., Savu, M. and Borcos, M. (1967): Geological Map of Romania sc. 1:200.000, Brad sheet, Inst. Geol. Bucuresti.
Dallmeyer, R. D., Pana, D., Neubauer, F.and Erdmer, P. (1999): Tectonothermal evolution of the Apuseni Mountains, Romania: Resolution of Variscan versus Alpine events with 40Ar/39Ar ages. Journal of Geology, 107, 329-352.
Dimitrescu, R. (1988): Apuseni Mountains. In: V. Zoubek (ed.). Precambrian in younger fold belts. John Wiley&Sons, New York, 853-862.
Dimitrescu, R., Bleahu, M. and Lupu, M. (1977): Geological Map of Romania sc. 1:50.000, Avram Iancu sheet, Inst. Geol. Geofiz. Bucuresti.
Dimitrescu, R., Bordea, J. and Bordea, S. (1974): Geological Map of Romania sc. 1:50.000, Campeni sheet, Inst. Geol. Geofiz. Bucuresti.
Giusca, D., Savu, H. and Borcos, M. (1967): Asupra stratigrafiei sisturilor cristaline din Muntii Apuseni. St. Cerc. Geol. Geofiz. Geogr., 12, 1, 41-56, Ed. Acad. Rom., Bucuresti.
Hartopanu, I., Borcos, M., Bostinescu, S. and Dimitrescu, R. (1982): Geological Map of Romania sc. 1:50.000, Muntele Mare sheet, Inst. Geol. Geofiz. Bucuresti.
Hartopanu, I., Hartopanu, P., Balintoni, I., Borcos, M., Rusu, A. and Lupu, M. (1982): Geological Map of Romania sc. 1:50.000, Valea Ierii sheet, Inst. Geol. Geofiz. Bucuresti.
Kräutner, H. G. (1988): Interregional correlations. In: V. Zoubek (ed.). Precambrian in younger fold belts. John Wiley&Sons, New York, 853-862.
Lupu, M., Borcos, M., Dimian, M., Lupu, D. and Dimitrescu, R. (1967): Geological Map of Romania sc. 1:200.000, Turda sheet, Inst. Geol. Bucuresti.
Lupu, M., Borcos, M., Lupu, D. and Bitoianu, C. (1967): Geological Map of Romania sc. 1:200.000, Simleul Silvaniei sheet, Inst. Geol. Bucuresti.
Mantea, Gh., Stefan, A., Rusu, A. and Dimitrescu, R. (1987): Geological Map of Romania sc. 1:50.000, Rachitele sheet, Inst. Geol. Geofiz. Bucuresti.
Marinescu, Fl., Papainopol, I., Popescu, Ag., Moisescu, V., Rusu, A., Horvath, A. R., Campeanu, St. and Tomescu, C. (1982): Geological Map of Romania sc. 1:50.000, Tusa sheet, Inst. Geol. Geofiz. Bucuresti.
Murariu, T. (2001): Geochimia pegmatitelor din Romania. Ed. Acad. Rom., Bucuresti, 356p.
Pana, D. (1998): Petrogenesis and tectonics of the basement rocks of the Apuseni Mountains: significance for the Alpine tectonics of the Carpatho-Pannonian region. PhD Thesis, University of Alberta, 356p., Canada.
Pana, D. and Balintoni, I. (2000): Igneous protoliths of the Biharia lithotectonic assemblage: timing of intrision, geochemical considerations, tectonic setting. Studia Univ. Babes-Bolyai, Geologia, XLV, 1, 3-22, Cluj Napoca.
Papainopol, I., Popescu, Ag. and Campeanu, St. (1977): Geological Map of Romania sc. 1:50.000, Plopis sheet, Inst. Geol. Geofiz. Bucuresti.
Patrulius, D., Popa, E., Campeanu, St. and Orasanu, St. (1973): Geological Map of Romania sc. 1:50.000, Remeti sheet, Inst. Geol. Geofiz. Bucuresti.
Pavelescu, L., Pop, G., Ailenei, G., Ene, I., Soroiu, M. and Popescu, G. (1975): K-Ar age determinations from the Apuseni and Banat Mountains. Rev. Rom. Geophys, 19, 67-79.
Rusu, A., Marinescu, Fl., Marunteanu, M., Sabau, G. and Stefan, A. (1994): Geological Map of Romania sc. 1:50.000, Zalau sheet, Inst. Geol. Geofiz. Bucuresti.
Rusu, a., Popescu, B., Moisescu, V., Ignat, V., Marinescu, Fl. and Popescu, Ag. (1977): Geological Map of Romania sc. 1:50.000, Mezes sheet, Inst. Geol. Geofiz. Bucuresti.
Sandulescu, M., Kräutner, M., Borcos, M., Nastaseanu, S., Patrulius, D., Stefanescu, M., Ghenea, C., Lupu, M., Savu, H., Bercia, I. and Marinescu, F. (1978): Geological Map of Romania, sc. 1:1.000.000, Inst. Geol. Geofiz. Bucuresti.
Saulea, E., Dimitrescu, I., Bombita, Gh., Marinescu, F., Borcos, M. and Stanciu, J. (1967): Geological Map of Romania sc. 1:200.000, Cluj sheet, Inst. Geol. Bucuresti.
Soroiu, M., popescu, G., Kasper, V. and Dimitrescu, R. (1969): Contributions preliminaires a la géochronologie des massifs cristallins des Monts Apuseni. An. St. Univ. "Al. I. Cuza", Sect. II, b (Geologie), XV, 25-33, Iasi.
Stan, N., Arion, M., Colios, E. and Serbanescu, A. (1989): Observations sur les roches cristallophylliennes granitoides et filoniennes des Monts de Codru (Monts Apuseni). D.S. Inst. Geol. Geofiz., 74/1, 263-276, Bucuresti.
Stefan, A., Ignat, V., Campeanu, St., Popescu, B., Istrate, Gh. and Orasanu, Th. (1974): Geological Map of Romania sc. 1:50.000, Ciucea sheet, Inst. Geol. Geofiz. Bucuresti.
Stumbea, D. (2001): Geochimia pegmatitelor din sudul Gilaului. Ed. Univ. "A. I. Cuza", Iasi, 266pp.
Visarion, M. and Sandulescu, M. (1979): Structura subasmentului depresiunii pannonice in Romania (sectoarele central si sudic). St. Cerc. Geol., Geofiz., Geogr., Geofizica; 17, 2, 191-201, Bucuresti.
Descriptions of the neighbouring Units:
======================
Show the "Pin-board" of this Unit.